

Why choose Cambridge?

Cambridge Assessment International Education prepares school students for life, helping them develop an informed curiosity and a lasting passion for learning. We are part of the University of Cambridge.

Our international qualifications are recognised by the world's best universities and employers, giving students a wide range of options in their education and career. As a not-for-profit organisation, we devote our resources to delivering high-quality educational programmes that can unlock learners' potential.

Our programmes and qualifications set the global standard for international education. They are created by subject experts, rooted in academic rigour and reflect the latest educational research. They provide a strong platform for learners to progress from one stage to the next, and are well supported by teaching and learning resources.

Our mission is to provide educational benefit through provision of international programmes and qualifications for school education and to be the world leader in this field. Together with schools, we develop Cambridge learners who are confident, responsible, reflective, innovative and engaged – equipped for success in the modern world.

Every year, nearly a million Cambridge students from 10 000 schools in 160 countries prepare for their future with an international education from Cambridge International.

Quality management

Our systems for managing the provision of international qualifications and education programmes for students aged 5 to 19 are certified as meeting the internationally recognised standard for quality management, ISO 9001:2008. Learn more at www.cambridgeinternational.org/ISO9001

Cambridge Assessment International Education is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of the University of Cambridge Local Examinations Syndicate (UCLES), which itself is a department of the University of Cambridge.

UCLES retains the copyright on all its publications. Registered centres are permitted to copy material from this booklet for their own internal use. However, we cannot give permission to centres to photocopy any material that is acknowledged to a third party even for internal use within a centre.

Contents

Introduction	2
Stage 1	4
Stage 2	6
Stage 3	8
Stage 4	10
Stage 5	12
Stage 6	14

Introduction

Welcome to the Cambridge Primary Science curriculum framework.

This framework provides a comprehensive set of progressive learning objectives for science. The objectives detail what the learner should know or what they should be able to do in science in each year of primary education. They provide a structure for teaching and learning and a reference against which learners' ability and understanding can be checked.

The Cambridge Primary Science curriculum is presented in four content areas: *Scientific enquiry, Biology, Chemistry* and *Physics. Scientific enquiry* is about considering ideas, evaluating evidence, planning investigative work and recording and analysing data. The *Scientific enquiry* objectives underpin *Biology, Chemistry* and *Physics,* which are focused on developing confidence and interest in scientific knowledge. Environmental awareness and some history of science are also incorporated. The Cambridge Primary Science curriculum framework provides a solid foundation upon which the later stages of education can be built.

The Cambridge Curriculum is founded on the values of the University of Cambridge and best practice in schools. The curriculum is dedicated to developing learners who are confident, responsible, innovative and engaged. Each curriculum framework for English, mathematics and science is designed to engage learners in an active and creative learning journey.

Note on codes

Each learning objective has a unique curriculum framework code, e.g. **1Ep1**. These codes appear in the Cambridge International Teacher Guide, schemes of work and other published resources. Each sub-strand has a blue reporting code, e.g. **Ep**. These codes appear in Checkpoint feedback reports. Please note that the **Ep** reporting code covers both the *Ideas and evidence* and the *Plan investigative work* sub-strands. The **Eo** reporting code covers both the *Obtain and present evidence* and the *Consider evidence and approach* sub-strands. Stages 1 and 2 are not assessed and so do not have reporting codes.

Safety issues

An essential part of this programme is that learners develop skills in scientific enquiry. This includes the collection of primary data by experiment. Scientific experiments are engaging and provide opportunities for first hand exploration. However, they must, at all times, be conducted with the utmost respect for safety, specifically:

- It is the responsibility of the teacher in charge to adhere and conform to any national, regional and school regulation in place with respect to safety of scientific experimentation.
- It is the responsibility of the teacher in charge to make a risk assessment of the hazards involved with any particular class or individual when undertaking a scientific experiment that conforms to these regulations.

Cambridge International takes no responsibility for the management of safety for individual published experiments or for the management of safety for the undertaking of practical experiments in any given location. Cambridge International only endorses support material in relation to curriculum content and is not responsible for the safety of activities contained within it. The responsibility for the safety of all activities and experiments remains with the school.

Animal welfare and the use of animals in science

Throughout biology, learners study a variety of living things, including animals. As part of the University of Cambridge, Cambridge International shares the approach that good animal welfare and good science go hand-in-hand.

Learners should have opportunities to observe animals in their natural environment. This should be done responsibly and not in a way that could cause distress or harm to the animals or damage to the environment.

If living animals are brought into schools then the teacher must ensure that any national, regional and school regulations are followed regarding animal welfare. In all circumstances, the teacher responsible must ensure all animals have:

- a suitable environment, including being housed with, or apart from, other animals (as required for the species)
- a suitable diet
- the opportunity to exhibit normal behaviour patterns
- protection from pain, injury, suffering and disease.

There is no requirement for learners to participate in, or observe, animal dissections for Cambridge Primary. Although dissection can provide a valuable learning opportunity, some learners decide not to continue studying biology because they dislike animal dissection. Several alternatives are available to dissection (such as models and diagrams) which teachers should consider during their planning.

If a teacher decides to include animal dissection then animal material should be obtained from premises licensed to sell them for human or pet consumption, or from a reputable biological supplier. This approach helps to ensure animal welfare standards and also decreases the risk from pathogens being present in the material. No teacher or learner should kill animals for dissection.

When used, fresh material should be kept at 5 °C or below until just before use. Frozen material should be defrosted slowly (at 5 °C) without direct heat. All fresh or defrosted material should be used within 2 days. Preserved animal materials should only be handled when wearing gloves and in a well-ventilated room.

The responsibility for ensuring the welfare of all animals studied in science remains with the school.

Scientific enquiry

Ideas and evidence

• 1Ep1 Try to answer questions by collecting evidence through observation

Plan investigative work

- **1Ep2** Ask questions and contribute to discussions about how to seek answers
- 1Ep3 Make predictions
- **1Ep4** Decide what to do to try to answer a science question

Obtain and present evidence

- **1Eo1** Explore and observe in order to collect evidence (measurements and observations) to answer questions
- **1Eo2** Suggest ideas and follow instructions
- **1Eo3** Record stages in work

Consider evidence and approach

- 1Eo4 Make comparisons
- 1Eo5 Compare what happened with predictions
- 1Eo6 Model and communicate ideas in order to share, explain and develop them

Biology

Plants

- **1Bp1** Know that plants are living things
- 1Bp2 Know that there are living things and things that have never been alive
- 1Bp3 Explore ways that different animals and plants inhabit local environments
- 1Bp4 Name the major parts of a plant, looking at real plants and models
- **1Bp5** Know that plants need light and water to grow
- **1Bp6** Explore how seeds grow into flowering plants

Humans and animals

- 1Bh1 Recognise the similarities and differences between each other
- 1Bh2 Recognise and name the main external parts of the body
- 1Bh3 Know about the need for a healthy diet, including the right types of food and water
- 1Bh4 Explore how senses enable humans and animals to be aware of the world around them
- 1Bh5 Know that humans and animals produce offspring which grow into adults

4

Chemistry

Material properties

- 1Cp1 Use senses to explore and talk about different materials
- 1Cp2 Identify the characteristics of different materials
- 1Cp3 Recognise and name common materials
- 1Cp4 Sort objects into groups based on the properties of their materials

Physics

Forces

- 1Pf1 Explore, talk about and describe the movement of familiar things
- **1Pf2** Recognise that both pushes and pulls are forces
- 1Pf3 Recognise that when things speed up, slow down or change direction there is a cause

Sound

- **1Ps1** Identify many sources of sound
- 1Ps2 Know that we hear when sound enters our ear
- 1Ps3 Recognise that as sound travels from a source it becomes fainter

Scientific enquiry

Ideas and evidence

- **2Ep1** Collect evidence by making observations when trying to answer a science question
- 2Ep2 Use first hand experience, e.g. observe melting ice
- **2Ep3** Use simple information sources

Plan investigative work

- 2Ep4 Ask questions and suggest ways to answer them
- 2Ep5 Predict what will happen before deciding what to do
- 2Ep6 Recognise that a test or comparison may be unfair

Obtain and present evidence

- **2Eo1** Make suggestions for collecting evidence
- 2Eo2 Talk about risks and how to avoid danger
- 2Eo3 Make and record observations
- 2Eo4 Take simple measurements
- 2Eo5 Use a variety of ways to tell others what happened

Consider evidence and approach

- 2Eo6 Make comparisons
- 2Eo7 Identify simple patterns and associations
- **2Eo8** Talk about predictions (orally and in text), the outcome and why this happened
- 2Eo9 Review and explain what happened

Biology

Living things in their environment

- **2Be1** Identify similarities and differences between local environments and know about some of the ways in which these affect the animals and plants that are found there
- 2Be2 Understand ways to care for the environment. Secondary sources can be used
- 2Be3 Observe and talk about their observation of the weather, recording reports of weather data

Chemistry

Material properties

- 2Cp1 Recognise some types of rocks and the uses of different rocks
- **2Cp2** Know that some materials occur naturally and others are man-made

Material changes

- **2Cc1** Know how the shapes of some materials can be changed by squashing, bending, twisting and/or stretching
- 2Cc2 Explore and describe the way some everyday materials change when they are heated or cooled
- 2Cc3 Recognise that some materials can dissolve in water

Physics

Light and dark

- 2Pl1 Identify different light sources including the sun
- 2Pl2 Know that darkness is the absence of light
- 2Pl3 Be able to identify shadows

Electricity

- 2Pm1 Recognise the components of simple circuits involving cells (batteries)
- **2Pm2** Know how a switch can be used to break a circuit

The Earth and beyond

- **2Pb1** Explore how the sun *appears* to move during the day and how shadows change
- **2Pb2** Model how the spin of the Earth leads to day and night, e.g. with different sized balls and a torch

E Scientific enquiry

Ep Ideas and evidence

• 3Ep1 Collect evidence in a variety of contexts to answer questions or test ideas

Ep Plan investigative work

- 3Ep2 Suggest ideas, make predictions and communicate these
- 3Ep3 With help, think about collecting evidence and planning fair tests

Eo Obtain and present evidence

- 3Eo1 Observe and compare objects, living things and events
- **3Eo2** Measure using simple equipment and record observations in a variety of ways
- 3Eo3 Present results in drawings, bar charts and tables

Eo Consider evidence and approach

- **3Eo4** Draw conclusions from results and begin to use scientific knowledge to suggest explanations
- **3Eo5** Make generalisations and begin to identify simple patterns in results

B Biology

Bp Plants

- **3Bp1** Know that plants have roots, leaves, stems and flowers
- 3Bp2 Explain observations that plants need water and light to grow
- 3Bp3 Know that water is taken in through the roots and transported through the stem
- **3Bp4** Know that plants need healthy roots, leaves and stems to grow well
- **3Bp5** Know that plant growth is affected by temperature

Bh Humans and animals

- **3Bh1** Know life processes common to humans and animals include nutrition (water and food), movement, growth and reproduction
- 3Bh2 Describe differences between living and non-living things using knowledge of life processes
- 3Bh3 Explore and research exercise and the adequate, varied diet needed to keep healthy
- 3Bh4 Know that some foods can be damaging to health, e.g. very sweet and fatty foods
- 3Bh5 Explore human senses and the ways we use them to learn about our world
- 3Bh6 Sort living things into groups, using simple features and describe rationale for groupings

C Chemistry

Cp Material properties

- **3Cp1** Know that every material has specific properties, e.g. hard, soft, shiny
- 3Cp2 Sort materials according to their properties
- **3Cp3** Explore how some materials are magnetic but many are not
- 3Cp4 Discuss why materials are chosen for specific purposes on the basis of their properties

P Physics

Pf Forces and motion

- **3Pf1** Know that pushes and pulls are examples of forces and that they can be measured with forcemeters
- 3Pf2 Explore how forces can make objects start or stop moving
- **3Pf3** Explore how forces can change the shape of objects
- **3Pf4** Explore how forces, including friction, can make objects move faster or slower or change direction

E Scientific enquiry

Ep Ideas and evidence

- 4Ep1 Collect evidence in a variety of contexts
- 4Ep2 Test an idea or prediction based on scientific knowledge and understanding

Ep Plan investigative work

- **4Ep3** Suggest questions that can be tested and make predictions; communicate these
- **4Ep4** Design a fair test and plan how to collect sufficient evidence
- **4Ep5** Choose apparatus and decide what to measure

Eo Obtain and present evidence

- 4Eo1 Make relevant observations and comparisons in a variety of contexts
- 4Eo2 Measure temperature, time, force and length
- **4Eo3** Begin to think about the need for repeated measurements of, for example, length
- 4Eo4 Present results in drawings, bar charts and tables

Eo Consider evidence and approach

- 4Eo5 Identify simple trends and patterns in results and suggest explanations for some of these
- **4Eo6** Explain what the evidence shows and whether it supports predictions. Communicate this clearly to others
- 4Eo7 Link evidence to scientific knowledge and understanding in some contexts

B Biology

Bh Humans and animals

- 4Bh1 Know that humans (and some animals) have bony skeletons inside their bodies
- **4Bh2** Know how skeletons grow as humans grow, support and protect the body
- **4Bh3** Know that animals with skeletons have muscles attached to the bones
- 4Bh4 Know how a muscle has to contract (shorten) to make a bone move and muscles act in pairs
- 4Bh5 Explain the role of drugs as medicines

Be Living things in their environment

- **4Be1** Investigate how different animals are found in different habitats and are suited to the environment in which they are found
- **4Be2** Use simple identification keys
- 4Be3 Recognise ways that human activity affects the environment, e.g. river pollution, recycling waste

C Chemistry

Cs States of matter

- 4Cs1 Know that matter can be solid, liquid or gas
- 4Cs2 Investigate how materials change when they are heated and cooled
- 4Cs3 Know that melting is when a solid turns into a liquid and is the reverse of freezing
- 4Cs4 Observe how water turns into steam when it is heated but on cooling the steam turns back into water

P Physics

Ps Sound

- **4Ps1** Explore how sounds are made when objects, materials or air vibrate and learn to measure the volume of sound in decibels with a sound level meter
- 4Ps2 Investigate how sound travels through different materials to the ear
- 4Ps3 Investigate how some materials are effective in preventing sound from travelling through them
- **4Ps4** Investigate the way *pitch* describes how high or low a sound is and that high and low sounds can be loud or soft. Secondary sources can be used
- **4Ps5** Explore how pitch can be changed in musical instruments in a range of ways

Pm Electricity and magnetism

- 4Pm1 Construct complete circuits using switch, cell (battery), wire and lamps
- **4Pm2** Explore how an electrical device will not work if there is a break in the circuit
- **4Pm3** Know that electrical current flows and that models can describe this flow, e.g. particles travelling around a circuit
- 4Pm4 Explore the forces between magnets and know that magnets can attract or repel each other
- 4Pm5 Know that magnets attract some metals but not others

E Scientific enquiry

Ep Ideas and evidence

- **5Ep1** Know that scientists have combined evidence with creative thinking to suggest new ideas and explanations for phenomena
- 5Ep2 Use observation and measurement to test predictions and make links

Ep Plan investigative work

- **5Ep3** Make predictions of what will happen based on scientific knowledge and understanding, and suggest and communicate how to test these
- **5Ep4** Use knowledge and understanding to plan how to carry out a fair test
- **5Ep5** Collect sufficient evidence to test an idea
- 5Ep6 Identify factors that need to be taken into account in different contexts

Eo Obtain and present evidence

- **5Eo1** Make relevant observations
- 5Eo2 Measure volume, temperature, time, length and force
- **5Eo3** Discuss the need for repeated observations and measurements
- **5Eo4** Present results in bar charts and line graphs

Eo Consider evidence and approach

- **5Eo5** Decide whether results support predictions
- **5Eo6** Begin to evaluate repeated results
- **5Eo7** Recognise and make predictions from patterns in data and suggest explanations using scientific knowledge and understanding
- **5Eo8** Interpret data and think about whether it is sufficient to draw conclusions

B Biology

Bp Plants

- **5Bp1** Know that plants need energy from light for growth
- 5Bp2 Know that plants reproduce
- 5Bp3 Observe how seeds can be dispersed in a variety of ways
- 5Bp4 Investigate how seeds need water and warmth for germination, but not light
- 5Bp5 Know that insects pollinate some flowers
- **5Bp6** Observe that plants produce flowers which have male and female organs; seeds are formed when pollen from the male organ fertilises the ovum (female)
- **5Bp7** Recognise that flowering plants have a life cycle including pollination, fertilisation, seed production, seed dispersal and germination

C Chemistry

Cs States of matter

- 5Cs1 Know that evaporation occurs when a liquid turns into a gas
- 5Cs2 Know that condensation occurs when a gas turns into a liquid and that it is the reverse of evaporation
- **5Cs3** Know that air contains water vapour and when this meets a cold surface it may condense
- 5Cs4 Know that the boiling point of water is 100 °C and the melting point of ice is 0 °C
- **5Cs5** Know that when a liquid evaporates from a solution the solid is left behind

P Physics

Pl Light

- **5Pl1** Observe that shadows are formed when light travelling from a source is blocked
- **5Pl2** Investigate how the size of a shadow is affected by the position of the object
- 5Pl3 Observe that shadows change in length and position throughout the day
- **5Pl4** Know that light intensity can be measured
- **5Pl5** Explore how opaque materials do not let light through and transparent materials let a lot of light through
- **5Pl6** Know that we see light sources because light from the source enters our eyes
- **5Pl7** Know that beams/rays of light can be reflected by surfaces including mirrors, and when reflected light enters our eyes we see the object
- **5Pl8** Explore why a beam of light changes direction when it is reflected from a surface

Pb The Earth and beyond

- **5Pb1** Explore, through modeling, that the sun does not move; its *apparent* movement is caused by the Earth spinning on its axis
- 5Pb2 Know that the Earth spins on its axis once in every 24 hours
- 5Pb3 Know that the Earth takes a year to orbit the sun, spinning as it goes
- 5Pb4 Research the lives and discoveries of scientists who explored the solar system and stars

E Scientific enquiry

Ep Ideas and evidence

- **6Ep1** Consider how scientists have combined evidence from observation and measurement with creative thinking to suggest new ideas and explanations for phenomena
- 6Ep2 Collect evidence and data to test ideas including predictions

Ep Plan investigative work

- 6Ep3 Discuss how to turn ideas into a form that can be tested
- 6Ep4 Make predictions using scientific knowledge and understanding
- 6Ep5 Choose what evidence to collect to investigate a question, ensuring that the evidence is sufficient
- 6Ep6 Identify factors that are relevant to a particular situation
- 6Ep7 Choose which equipment to use

Eo Obtain and present evidence

- **6Eo1** Make a variety of relevant observations and measurements using simple apparatus correctly
- **6Eo2** Decide when observations and measurements need to be checked by repeating to give more reliable data
- 6Eo3 Use tables, bar charts and line graphs to present results

Eo Consider evidence and approach

- 6Eo4 Make comparisons
- 6Eo5 Evaluate repeated results
- 6Eo6 Identify patterns in results and results that do not appear to fit the pattern
- 6Eo7 Use results to draw conclusions and to make further predictions
- **6Eo8** Suggest and evaluate explanations for predictions using scientific knowledge and understanding and communicate these clearly to others
- 6Eo9 Say if and how evidence supports any prediction made

B Biology

Bh Humans and animals

- **6Bh1** Use scientific names for some major organs of body systems
- 6Bh2 Identify the position of major organs in the body
- 6Bh3 Describe the main functions of the major organs of the body
- **6Bh4** Explain how the functions of the major organs are essential

Be Living things in their environment

- **6Be1** Explore how humans have positive and negative effects on the environment, e.g. loss of species, protection of habitats
- **6Be2** Explore a number of ways of caring for the environment, e.g. recycling, reducing waste, reducing energy consumption, not littering, encouraging others to care for the environment
- **6Be3** Know how food chains can be used to represent feeding relationships in a habitat and present these in text and diagrams
- **6Be4** Know that food chains begin with a plant (the producer), which uses energy from the sun
- **6Be5** Understand the terms *producer*, *consumer*, *predator* and *prey*
- 6Be6 Explore and construct food chains in a particular habitat

C Chemistry

Cc Material changes

- 6Cc1 Distinguish between reversible and irreversible changes
- 6Cc2 Explore how solids can be mixed and how it is often possible to separate them again
- **6Cc3** Observe, describe, record and begin to explain changes that occur when some solids are added to water
- **6Cc4** Explore how, when solids do not dissolve or react with water, they can be separated by filtering, which is similar to sieving
- **6Cc5** Explore how some solids dissolve in water to form solutions and, although the solid cannot be seen, the substance is still present

P Physics

Pf Forces and motion

- **6Pf1** Distinguish between mass measured in kilograms (kg) and weight measured in newtons, noting that kilograms are used in everyday life
- 6Pf2 Recognise and use units of force, mass and weight and identify the direction in which forces act
- 6Pf3 Understand the notion of energy in movement
- **6Pf4** Recognise friction (including air resistance) as a force which can affect the speed at which objects move and which sometimes stops things moving

Pm Electricity and magnetism

- 6Pm1 Investigate how some materials are better conductors of electricity than others
- 6Pm2 Investigate how some metals are good conductors of electricity while most other materials are not
- **6Pm3** Know why metals are used for cables and wires and why plastics are used to cover wires and as covers for plugs and switches
- **6Pm4** Predict and test the effects of making changes to circuits, including length or thickness of wire and the number and type of components
- 6Pm5 Represent series circuits with drawings and conventional symbols

Cambridge Assessment International Education 1 Hills Road, Cambridge, CB1 2EU, United Kingdom Tel: +44 (0)1223 553554 Fax: +44 (0)1223 553558 Email: info@cambridgeinternational.org www.cambridgeinternational.org

Copyright © UCLES July 2018

